Allgemeine Literatur über Instrumentelle Analytik

- H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental Methods of Analysis, Wadsworth Pub. Co.
- D.A. Skoog, J.J. Leary, Instrumentelle Analytik, Springer-Verlag, Berlin
- H.A. Strobel, Chemical Instrumentation, Addison-Wesley, Reading
- K. Doerffel, R. Geyer, H. Müller (Hrsg.), Analytikum, Deutscher Verlag für Grundstoffindustrie, Leipzig
- H. Naumer, W. Heller (Hrsg.), Untersuchungsmethoden in der Chemie, Einführung in die moderne Analytik, Georg Thieme Verlag, Stuttgart
- D.L. Andrews (Ed.), Perspectives in Modern Chemical Spectroscopy, Springer-Verlag, Berlin
- D. Betteridge, H.E. Hallam, Modern Analytical Methods, The Chemical Society, London
- H. Günzler et al. (Hrsg.), Analytiker-Taschenbuch, Band 1 bis 20 Springer-Verlag Berlin

Glossary of Acronyms and Abbreviations

AA	atomic absorption	ETV	electrothermal vaporization
AAS	atomic absorption spectroscopy/metry	EXAFS	extended x-ray absorption, fine structure
A/D	analog-to-digital	FAAS	flame atomic absorption spectroscopy
ADC	A/D converter	FAB-MS	fast atom bombardment mass
AES	atomic emission spectroscopy/metry		spectrometry
AES	Auger electron spectroscopy	FAES	flame atomic emission spectroscopy
AFS	atomic fluorescence spectroscopy	FAFS	flame atomic fluorescence spectroscopy
APS	appearance potential spectroscopy	FAS	flame absorption spectroscopy
ARIES	angular resolved ion and electron	FDCD	fluorescence detected circular dichroism
1.014	spectroscopy	FDMS	field desorption mass spectrometry
ASIA	atomizer, source, ICPS in AFS	FFS FFT	frame fluorescence spectroscopy
AIKS	(also known as IPS)		flow injection analysis
CADI	(also known as IKS)	FIA	free-induction decay
CARS	coherent anti-Stokes Raman spectroscony	FIMS	field ionization mass spectrometry
CD	circular dichroism	FIRE	flame infrared emission spectroscopy
CEIR	cryogenically enhanced infrared	FPT	fundamental parameters technique
CFA	continuous flow analysis	FREDOF	frequency-domain fluorometry
CID	collision-induced dissociation	FT	Fourier transform
CI-MS	chemical ionization mass spectrometry	FT-IR	Fourier transform-infrared spectroscopy
CIR	cylindrical internal reflectance (an FT-IR	FWHH	full peak width at half height
	sampling technique)	FWHM	full width at half maximum
COMAS	concentration-modulated absorption	GC	gas chromatography
	spectroscopy	GDMS	glow discharge mass spectrometer(ry)
COSY	homonuclear correlation spectroscopy	GFAAS	graphite furnace atomic absorption
CP-MAS	cross-polarization magic angle sample		spectroscopy
	spinning (numerous variations)	GPMAS	gas phase molecular absorption
CRAMPS	combined rotation and multiple pulse		spectroscopy
	spectroscopy	HETEROCOR	two-dimensional heteronuelear correla-
CSAA	continuum-source atomic absorption		tion spectroscopy
	(spectroscopy)	HG	hydride generation
CSN	conductive solids nebulizer	HGA	heated graphite atomization
CSRS	coherent Stokes Raman spectroscopy	HPLC	high performance liquid chromatography
CW	continuous wave (opposite of pulsed in	HQI	hit quality index
D/A	laser terminology)	HREELS	high resolution electron energy loss
D/A DAC	digital-to-analog	UTC	spectrometers
DAC	diamond anvii celi	HIS IC	Hadamard transform spectroscopy
DCP	direct current plasma		in ductively counted aroung planet
DIN	detection limit	ICAP	inductively coupled algoit plasma
DL	deen level transient spectroscopy	ICP	ion evelotron resonance (also ET MS)
DMS	dynamic mass spectrometer	IDI	instrument detection limit
DR	diffuse reflectance	IDMS	isotone dilution mass spectrometry
DRS	denolarized Rayleigh spectrum	IETS	inelastic eluctron tunneling spectroscony
DRIFTS	diffuse reflectance infrared Fourier trans-	INADEOUATE	incredible natural abundance double quan-
Diario	form spectroscopy	name Quine	tum transfer experiment
DSC	differential scanning calorimetry	INEPT	insensitive nuclei enhanced by polariza-
DTA	differential thermal analysis		tion transfer
DTGS	deuterated triglycine sulfate (detector)	I/O	input-output
ECD	electron capture detection	IR	infrared
EDS	energy dispersive spectroscopy	IRS	internal reflection spectroscopy
EDXRF	energy-dispersive x-ray fluorescence	ISCA	ionisation spectroscopy for chemical
	spectrometry		analysis
EELS	electron energy-loss spectroscopy	ISS	ion scattering spectroscopy
EGP	evolved gas profile	ITD	ion trap detector
EI-MS	electron impact/ionisation mass	ITMS	ion trap mass spectrometry
	spectrometry	IVR	intramolecular vibrational-energy
EMPA	electron microprobe analysis (see EPMA)		redistribution
ENDOR	electron nuclear double beam resonance	JCAMP.DX	Joint Committee on Atomic and Molecu-
EPMA	electron probe microanalysis (see EMPA)	1.1.0	lar Physical Data (file structure)
EPK	electron paramagnetic resonance	LALS	Iow-angle laser light scattering
ESCA	spectroscopy		local area network
ESCA	ris (see also VPS)		laser-inicroprope mass analysis
ECD	sis (set also APS)		lager deservice
ESK FTA	electrothermal atomization		laser-excited atomic fluorescence
FTAAS	electrothermal atomic absorption	LLAID	spectrometry
	spectroscopy	LEI	laser-enhanced ionisation
	-rPJ		

Glossary of Acronyms and Abbreviations

LIF	laser-induced fluorescence	PLS	partial least squares
LIMA	laser ionisation mass analysis	PMA	photonic multichannel analyser
LIMS	laboratory information management	PMT	photomultiplier tube
	system	PPS	photophoretic spectroscopy
LIMS	laser ionisation mass spectrometry	RBS	Rutherford backscattering spectrometry
LOD	limit of detection	REMPI	resonance enhanced multiphoton
LP-CI	low pressure chemical ionisation		ionization
LSAAS	line-source atomic absorption	rf	radio frequency
	spectroscopy	RFS	remote fiber spectroscopy
LSIMS	liquid secondary ion mass spectrometry	RGA	residual gas analyzer(sis)
MAGIC	monodisperse aerosol generation inter-	RI	refractive index
	face combining LC and MS	RIA	radioimmunoassay
MAS	magic angle spinning	RIMS	resonance ionisation mass spectrometry
MASS	magic angle spinning sample	rms	root mean square
MCA	multichannel analyser	ROA	Ramen optical activity
MCD	magnetic circular dichroism	RR	resonance Raman (effect)
MCP	microchannel plate	SAM	scanning Auger microprobe(scope)
MCT	mercury cadmium telluride (detector)	SBD	Schottky barrier diode
MEFSD	maximum entropy Fourier spectral	SBR	signal-to-background ratio
	deconvolution	SD	standard deviation
MEM	maximum entropy method	SECSY	spin-echo correlated spectroscopy
MI	matrix isolation	SEM	scanning electron microscope/microscopy
MIKE	mass selection followed by ion kinetic en-	SERS	surface-enhanced Raman spectroscopy
MD	ergy analysis	SFC	supercritical fluid chromatography
MIP	microwave-induced plasma	S-H	Smith-Hieffje (background correction)
MIKS	multiple internal reflection spectroscopy	SHG	second narmonic generation
MLK	multiple linear regression	SIM	scanning ion microscopy
MPI	multipliciton formation	SIM	selective for more spectrometry
MKI	magnetic resonance imaging	SINIS	Surphury multielement analytical routine
MTES	matastable transfer emission spectroscopy	SMEAK	sectional magnetic resonance
NA A	neutron activation analysis	SIVIK S/N	signal to poise ratio
NRS	see NIST	SPC	statistical process control
near-IR	near-infrared spectroscopy (NIR)	SRM	standard reference material
NDIR	nondispersive infrared analysis	SSMS	spark-source mass spectrography
NIRS	near-infrared (reflectance) spectroscopy	STEM	scanning transmission electron micro-
NIST	National Institute of Standards and Tech-		scope/microscopy
	nology, formerly National Bureau of	STM	scanning tunneling microscope
NOTAL	Standards	SWIFT	stored waveform inverse Fourier trans-
NOESY	(two-dimensional) nuclear Overhauser		form (excitation)
NOD	effect spectroscopy	TDMS	tandem quadrupole mass spectrometry
NQK	nuclear quadrupole resonance	IGA	thermogravimetric analysis
NMR	nuclear magnetic resonance	TGS	triglycine sulfate (detector)
OAS	opto-accoustic spectroscopy	TIMS	thermal ionization mass spectrometry
OES	optical emission spectroscopy	TOF SIME	thin-layer chromatography
OMA	optical multichannel analysers	TOF SIMS	time-of-fight secondary for mass
OSMA	optical initially dispersion	UHV	ultrahigh vacuum
USIMA	optical spectrometric muticitalmer		ultraviolet photoelectron spectroscopy
D Λ Λ	proton activation analysis		ultraviolet
PAS	photo-accoustic spectroscopy	UV/Vis	ultraviolet_visible spectroscopy
PASCA	positron annihilation spectroscopy for	VASS	variable angle sample spinning
Insen	chemical analysis	VCD	vibrational circular dichroism
PCR	principal component(s) regression	VT-CPMAS	variable temperature-cross polarization
PDA	photodiode array		magic angle spinning
PDMS	plasma desorption mass spectrometry	VUV	vacuum ultraviolet
PDS	pulse-height distribution analysis	WDS	wavelength dispersive spectroscopy
PES	photoelectron spectroscopy	WDXRF	wavelength dispersive x-ray fluorescence
PGSE	pulsed-gradient spin-echo (NMR		spectrometry
	technique)	XPS	x-ray photoelectron spectroscopy (also
PIGE	particle (proton) induced gamma-ray emis-		ESCA)
	sion spectroscopy	XRD	x-ray diffraction
PIXE	particle (proton) induced x-ray emission	XRF	x-ray fluorescence spectrometry
	spectroscopy	XRMF	x-ray microfluorescence spectroscopy
PL	photoluminescence	ZAA	Zeeman atomic absorption

Überblick über die Grundverfahren der Instrumentellen Analytik

Methode	Physikalisches Prinzip	Art der Probe	Anwendung
Atomabsorptionsspektrometrie	Elektronenübergänge in äußeren Schalen	Atome im Grundzustand	Elementanalyse bis in den Spurenbereich
Atomemissionsspektrometrie	Elektronenübergänge in äußeren Schalen	Atome im angeregten Zustand	Elementanalyse bis in den Spurenbereich
UV/VIS-Absorptionsspektrometrie	Elektronenübergänge in äußeren Schalen	Molekülgase, Moleküle und Ionen in Lösungen, Festkörper	Qualitative und quantitative Analyse von Molekülen und Ionen
IR-Spektrometrie	Anregung von Schwingungen und Rotationen	Molekülgase, organische Moleküle	Qualitative Analyse und Strukturbestimmung von organischen Stoffen, Quantitative Analyse von Molekülgasen
Fluorimetrie	Elektronenübergänge in äußeren Schalen	Moleküle und Ionen in Lösungen, Festkörper	Qualitative und quantitative Analyse von Molekülen bis in den Spurenbereich
Röntgenfluoreszenzanalyse	Elektronenübergänge in inneren Schalen	Atome und Ionen in Flüssigkeiten und Festkörpern	Elementanalyse von Haupt- und Nebenkomponenten
Massenspektrometrie	Massenbestimmung aus Ladung/Masse von Ionen	Atom- und Molekülionen im Gaszustand	Qualitative und quantitative Analyse von Elementen und Molekülen
Kernresonanzspektrometrie	Richtungsübergänge von Atomkernen mit permanentem magnetischen Dipolmoment in äußeren Magnetfeldern	Moleküle in Lösungen und Festkörper	ldentifizierung und Strukturbestimmung von organischen Molekülen

Wellenlängenbereiche: Röntgen:

tgen: 0,0005 ... 0,005 μm UV: 0,01 ... 0,4 μm VIS: 0,4 ... 0,8 μm IR: 0,8 ... 100 μm

Schema eines Atomabsorptionsspektrometers

Schema eines Flammenemissionsspektrometers


```
Schema eines Gleichlicht-Einstrahl-Filterphotometers
```


Schema eines Fourier-Transform-IR-Spektrometers

Schema eines Kernresonanzspektrometers

Fourier-Transformation:

wobei Δg_j der Digitalisierungsabstand, n die Anzahl der Datenpunkte und m die Anzahl der "Frequenzen" ist.

Kreuzkorrelation:

mit dem Digitalisierungsabstand Δg und der Referenzfunktion V(g). j = 1...(n-m), wobei n die Anzahl der experimentellen Daten ist. In der Regel benutzt man als Funktion V(g) ein Gauß-Profil.

Beispiel eines Lock-in- oder phasensensitiven Verstärkers zur Verbesserung des Signal-Rausch-Verhältnisses

Das Referenz- und das Probensignal sind frequenzgleich und haben eine definierte, feste Phasenbeziehung. Die Chopperfrequenz f liegt in der Regel zwischen 50 und 1000 Hz. Das Probensignal ist verrauscht und weist langsame, signalrelevante zeitliche Änderungen auf (Zeitkonstante $\tau >> 1/f$). Diese entsprechen einer Frequenzmodulation von f mit $\Delta f \approx 1/\tau$. Der Lock-in-Verstärker erlaubt es, Rauschanteile mit Frequenzen $f_r \ge f$ zu reduzieren.

 U_S bzw. U_R sind die Ausgangsspannungen des Signal- und des Referenzdetektors jeweils nach der Entfernung von Gleichspannungsanteilen. Im Multiplikator wird das Produkt $U_S U_R$ gebildet, das die Grundfrequenz 2f besitzt und um einen zur Signalhöhe proportionalen Gleichspannungsanteil verschoben ist. Im Tiefpassfilter wird die Frequenz 2f entfernt und nur der langsam veränderliche Gleichspannungsanteil weiter verarbeitet.

Zur Definition der Genauigkeit

Definiton der Empfindlichkeit:

$$E = \frac{Y_1 - Y_0}{X_1 - X_0}$$

x ist die Konzentration oder der Gehalt des Analyten in der Probe.

Beide Meßgeräte haben die gleiche Empfindlichkeit.

Meßgerät 2 hat jedoch ein wesentlich höheres Signal-Rausch-Verhältnis.

Die beiden Signalmaxima müssen mindestens so weit voneinander entfernt sein, daß das Minimum des Gesamtsignals zwischen g_1 und g_2 höchstens auf halber Signalhöhe liegt. Häufig wird als Verschärfung verlangt, daß das Minimum höchstens bei 10 % der Signalhöhe liegen darf.

$$R = \frac{g}{\Delta g} \quad \text{wobei} \quad \Delta g = g_2 - g_1$$

Derivativ-Methode zur Verdeutlichung überlappender Banden:

Lineare Regression:

In der Regel wird in der instrumentellen Analytik eine Probe mit unbekanntem Gehalt des Analyten mit einer Reihe von Kalibrierproben verglichen. Die Kalibrierproben weisen entweder unterschiedliche, aber bekannte Gehalte des Analyten auf ("Kalibrierung mit einfachen Standards") oder enthalten unterschiedliche, zur Originalprobe addierte Mengen des Analyten ("Kalibrierung nach dem Standard-Additionsverfahren").

In beiden Fällen wird aus den Meßergebnissen der Standards eine Kalibriergerade als Regressionsgerade zusammen mit ihrem Toleranzbereich erstellt. Der Toleranzbereich beschreibt die Streuung der einzelnen Meßwerte um die Regressionsgerade. Im Gegensatz dazu beschreibt der Vertrauensbereich die Unsicherheit der Regressionsgeraden selbst. Der Toleranzbereich verschwindet anders als der Vertrauensbereich auch bei unendlich vielen Einzelwerten nicht. Für die Beurteilung der Unsicherheit einer analytischen Bestimmung muß daher der <u>Toleranzbereich</u> herangezogen werden.

Aus den n Wertepaaren (x_i, y_i) ergibt sich die Regressionsgerade y = a + bx auf folgende Weise:

Mit den Abkürzungen

$$\overline{\mathbf{y}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{y}_{i}; \ \overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i};$$

$$Q_{\mathbf{x}} = \sum_{i=1}^{n} (\mathbf{x}_{i} - \overline{\mathbf{x}})^{2}; \ Q_{\mathbf{y}} = \sum_{i=1}^{n} (\mathbf{y}_{i} - \overline{\mathbf{y}})^{2}; \ \mathbf{R} = \sum_{i=1}^{n} (\mathbf{x}_{i} - \overline{\mathbf{x}}) (\mathbf{y}_{i} - \overline{\mathbf{y}});$$

erhält man:

$$b = \frac{R}{Q_x}$$
; $a = \overline{y} - b\overline{x}$

Der Toleranzbereich wird folgendermaßen bestimmt:

Mit den weiteren Abkürzungen

$$\mu = n - 2; \qquad T = \sqrt{\frac{Q_y - \frac{R^2}{Q_x}}{\mu}}$$

ergibt sich:

$$\Delta \mathbf{y}(\mathbf{x}) = \pm \mathbf{t}_{\mu,\alpha} \mathbf{T} \sqrt{\mathbf{1} + \frac{1}{n} + \frac{(\mathbf{x} - \overline{\mathbf{x}})^2}{\mathbf{Q}_{\mathbf{x}}}}$$

wobei $t_{\mu,\alpha}$ aus der nebenstehenden Tabelle entnommen werden kann.

Die Grenzen des Toleranzbereiches sind Hyperbeln.

Der x-abhängige Term unter der Wurzel trägt allerdings in der Regel nicht mehr als 10% bis 20% zum Gesamtwert von $|\Delta \mathbf{y}(\mathbf{x})|$ bei. Deshalb kann näherungsweise gesetzt werden:

$$\Delta \mathbf{y} \approx \pm \mathbf{1,2} \cdot \mathbf{t}_{\mu,\alpha} \mathbf{T} \sqrt{\mathbf{1} + \frac{1}{n}}$$

Der Toleranzbereich wird damit durch zwei zur Regressionsgeraden parallele Geraden angenähert.

Die Parameter a und b der Regressionsgeraden weisen selbst eine Unsicherheiten auf:

Für die Vertrauensgrenzen von a und b gilt:

$$\Delta a = \pm t_{\mu,\alpha} T \sqrt{\frac{1}{n} + \frac{\overline{x}^2}{Q_x}}; \qquad \Delta b = \pm t_{\mu,\alpha} T \sqrt{\frac{1}{Q_x}};$$

Freiheitsgrade	Signifikanzniveau α	
$\mu = n-2$	0,05	0,01
1	12,70	63,70
2	4,30	9,92
3	3,18	5,84
4	2,78	4,60
5	2,57	4,03
6	2,45	3,71
7	2,36	3,50
8	2,31	3,36
9	2,26	3,25
10	2,23	3,17
~	1,96	2,58

Nachweis-, Erfassungs- und Bestimmungsgrenze:

In den sehr detaillierten Vorschriften der DIN 32 645 sind die Definitionen der charakteristischen Beurteilungsgrößen analytischer Verfahren festgelegt.

In den meisten Fällen der Praxis kann mit stark vereinfachten Festlegungen gearbeitet werden:

Nachweisgrenze:

Derjenige Gehalt des Analyten, für den die Wahrscheinlichkeit ihn nicht zu finden, obwohl er vorhanden ist, gleich 0,5 ist, heißt Nachweisgrenze x_{NG} . Die relative Unsicherheit des Messergebnisses beträgt dann 100 %.

Üblich in der Analytik ist ein Vertrauensniveau von 95 %, d.h. $\alpha = 1 - 0.95 = 0.05$. Nur dann, wenn eine Fehlentscheidung folgenreich wäre, wird mit dem Vertrauensniveau 99% ($\alpha = 0.01$) gearbeitet.

Erfassungsgrenze:

Derjenige Gehalt des Analyten, für den die Wahrscheinlichkeit ihn nicht zu finden, obwohl er vorhanden ist, gleich α ist, heißt Erfassungsgrenze x_{EG} . Die relative Unsicherheit des Messergebnisses beträgt dann 50 %.

Benutzt man diese Vereinbarung, so ist $x_{EG} = 2x_{NG}$.

Bestimmungsgrenze:

Derjenige Gehalt des Analyten, für den die relative Meßunsicherheit 1/k beträgt, heißt Bestimmungsgrenze x_{BG} . Üblich ist k = 3.

Benutzt man diese Vereinbarung, so ist $x_{BG} \approx 3x_{NG}$.

Durch x_{NG} sind also x_{EG} und x_{BG} festgelegt.

Die Anwendung dieser vereinfachten Version ist zulässig, weil die Nachweis-, Erfassungs- und Bestimmungsgrenzen selbst sehr große statistisch bedingte Unsicherheiten aufweisen.

Es gibt zwei Möglichkeiten zur Bestimmung der Nachweisgrenze:

a) <u>Leerprobenmethode:</u>

Die Nachweisgrenze ergibt sich aus der Standardabweichung mehrerer Messungen einer Blindprobe, die den Analyten nicht enthält.

b) Kalibriergeradenmethode:

Die Nachweisgrenze ergibt sich aus dem Toleranzbereich der Kalibriergeraden, die als Regressionsgerade aus den Messwerten einer Reihe von Standards mit bekannten Konzentrationen des Analyten errechnet wird. Die Methode kann auch auf die Kalibrierung mittels Standardaddition übertragen werden.

Vereinfachte Version der Leerprobenmethode:

x ist der Gehalt des Analyten in einer Probe, y ist der Meßwert einer Probe,

 $\mathbf{b} = \frac{\Delta \mathbf{y}}{\Delta \mathbf{x}}$ ist die aus Kalibrierdaten bekannte Empfindlichkeit.

Eine Leeprobe wird n-mal vermessen. Aus den n Werten $y_{0,i}$ wird der Mittlwert und die Standardabweichung errechnet:

$$\overline{\mathbf{y}}_{0} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{y}_{0,i}$$
; $\mathbf{s}_{0} = \sqrt{\frac{\sum_{i=1}^{n} \left(\mathbf{y}_{0,i} - \overline{\mathbf{y}}_{0}\right)^{2}}{n-1}}$;

Mit v = n - 1 gilt dann:

$$\boxed{\mathbf{x}_{NG} \approx \frac{\mathbf{s}_{0}}{b} \mathbf{t}_{\nu, \alpha} \sqrt{1 + \frac{1}{n}}}$$

 $t_{\nu,\alpha}$ folgt aus der Tabelle.

Vereinfacht wird häufig verwendet:

$$\mathbf{x}_{NG} \approx 3 \frac{\mathbf{s}_{0}}{\mathbf{b}}$$

Freiheitsgrade	Signifikanzniveau α	
v = n-1	0,05	0,01
1	12,70	63,70
2	4,30	9,92
3	3,18	5,84
4	2,78	4,60
5	2,57	4,03
6	2,45	3,71
7	2,36	3,50
8	2,31	3,36
9	2,26	3,25
10	2,23	3,17
~	1,96	2,58

Die Methode lässt sich auch auf die Abschätzung der Nachweisgrenze aus dem Signal-Rausch-Verhältnis eines zeitabhängigen Leerprobensignals y₀ übertragen:

$$\mathbf{x}_{\rm NG} \approx 3 \, \frac{\mathbf{y}_{\rm N} - \mathbf{y}_{\rm 0}}{\rm b}$$

Anmerkung zur Nachweisgrenze:

Aus der Definition der Nachweisgrenze aus der Leerwertmethode folgt, daß Meßgerät 2 eine wesentlich niedrigere Nachweisgrenze als Meßgerät 1 hat, obwohl beide Geräte die gleiche Empfindlichkeit haben.

Vereinfachte Version der Kalibriergeradenmethode bei Kalibrierung mit einfachen Standards:

Bei der Kalibrierung mit einfachen Standards wird die unbekannte Probe mit einer Reihe von Kalibrierproben mit bekannten Gehalten des Analyten verglichen. Aus den Meßwerten der Kalibrierproben wird eine Regressionsgerade ermittelt.

Kalibrierung mit einfachen Standards kann angewendet werden, wenn

- a) die Matrix der Standards mit der Matrix der Analysenprobe weitestgehend übereinstimmt und
- b) das Meßsignal der Leerprobe als konzentrationsunabhängiges Untergrundsignal von den Messsignalen aller Kalibrierproben und der unbekannten Probe subtrahiert werden kann.

 $b = E_0$ heißt "Standardempfindlichkeit".

Aus dem Meßwert y_p der unbekannten Probe ergibt sich x_P als:

$$\mathbf{x}_{p} = \frac{\mathbf{y}_{p} - \mathbf{a}}{\mathbf{b}}$$

Die Unsicherheit Δx_P folgt aus dem Toleranzbereich:

$$\Delta \mathbf{x}_{\mathbf{p}} \approx \frac{\Delta \mathbf{y}}{\mathbf{b}} \approx \pm \frac{\mathbf{1,2}}{\mathbf{b}} \mathbf{t}_{\mu,\alpha} \mathbf{T} \sqrt{\mathbf{1} + \frac{1}{n}}$$

Für die Nachweis-, Erfassungs- und Bestimmungsgrenze gilt annähernd:

$$x_{NG} \approx \left| \Delta x_{P} \right| \; ; \quad x_{EG} \approx 2 \left| \Delta x_{P} \right| \; ; \quad x_{BG} \approx 3 \left| \Delta x_{P} \right|$$

Wenn die Matrix der Standards und diejenige der Analysenprobe verschieden sind, muss der Einfluß der Matrix auf das Messsignal berücksichtigt werden. Meist ist die Matrix der Analysenprobe komplexer als die der Standards. In der Regel kommt es in diesem Fall mit zunehmenden Matrixeinflüssen zu einer konzentrationsunabhängigen relativen Depression des Messsignals.

Addiert man zur Originalprobe stufenweise zunehmende Mengen des Analyten, so kann die Steigung $\Delta y/\Delta x$ ermittelt werden. Aus dem von der Steigung unabhängigen Schnittpunkt der Regressionsgeraden mit der Abszisse kann dann der Gehalt der Originalprobe bestimmt werden:

Die "Emfindlichkeit" b = E ist in der Regel kleiner als die "Standardempfindlichkeit" E_0 . Der Quotient $\mathbf{R}_F = \frac{\mathbf{E}}{\mathbf{E}_0} < \mathbf{1}$ heißt "Wiederfindungsrate".

Die stufenweise addierten Mengen sollten etwa die Größe x_P aufweisen. Die Größenordnung von x_P muß also durch Vorversuche ermittelt werden.

 x_P ergibt sich als: $\mathbf{x}_P = \frac{\mathbf{a}}{\mathbf{b}}$

Die Unsicherheit Δx_P folgt aus dem Toleranzbereich:

$$\Delta \mathbf{x}_{\mathbf{p}} \approx \frac{\Delta \mathbf{y}}{\mathbf{b}} \approx \pm \frac{\mathbf{1,2}}{\mathbf{b}} \mathbf{t}_{\mu,\alpha} \mathbf{T} \sqrt{\mathbf{1} + \frac{\mathbf{1}}{n}}$$

Für die Nachweis-, Erfassungs- und Bestimmungsgrenze gilt annähernd: $x_{NG} \approx |\Delta x_P|$; $x_{EG} \approx 2 |\Delta x_P|$; $x_{BG} \approx 3 |\Delta x_P|$ Vereinfachte Version der Kalibriergeradenmethode bei Kalibrierung nach Methode des Inneren Standards:

Das Messsignal eines Analyten ist häufig durch nicht erfassbare Parameter, die geräte- und matrixabhängig sein können, beeinflusst. Beispiele solcher Effekte:

Es kann eine Gerätedrift auftreten. Wechselnde physikalische Eigenschaften der Proben (Viskosität, Oberflächenspannung, Temperatur) können vorkommen. In der Emissionsspektrometrie können die Anregungs- und Emissionsbedingungen von unkontrollierbaren Flammenvariablen abhängen. In der Gas- und Flüssigkeitschromatographie treten Unsicherheiten bei der Probeninjektion auf. Bei der Röntgenfluoreszenzanalyse hängen Absorptions- und Verstärkungseffekte stark von der Matrix ab. Bei der Röntgenphotoelektronen-spektrometrie sind die Emissionsbedingungen von vielen Oberflächeneigenschaften abhängig.

Zur Probe und zu allen Standards wird dann ein Stoff als "Innerer Standard" in jeweils gleicher Menge zugegeben.

Der Innere Standard muss folgende Bedingungen erfüllen:

- Er darf in der ursprünglichen Probe nicht vorhanden sein.
- Seine physikalischen und chemischen Eigenschaften ähneln denjenigen des Analyten so weit wie möglich.
- Sein Messsignal muss leicht messbar sein und darf mit demjenigen des Analyten nicht interferieren.
- Die Empfindlichkeiten des Messsystems für Analyt und Innerem Standard müssen in etwa gleich sein.

Es wird dann der Quotient der Messsignale des Analyten und des Inneren Standards gebildet:

 $\mathbf{Q} = \frac{\mathbf{y}_{A} - \mathbf{y}_{A,0}}{\mathbf{y}_{s} - \mathbf{y}_{s,0}}$, wobei $y_{A,0}$ und $y_{S,0}$ die Messsignale der Leerprobe vor Zugabe des Inneren

Standards sind.

Q ist dann weitgehend unabhängig von den oben genannten Einflüssen.

Als Kalibrierkurve wird dann die Funktion Q(x) verwendet, wobei x der Gehalt des Analyten in den Standards ist.

